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This paper consolidate\ the result\ of home recent worh on the rclatlon between forward prices 
and futures prices. It develops a number of propositIons characterizlnp the two prices. These 
propositions contam several testable implications about the difference between forward and 

futures prices. Many of the propositions show that equilibrium forward and futures prices are 
equal to the values of particular assets, even though they are not in themselves asset prices. The 
paper then illustrates these results in the context of two valuation models and discusses the 
effects of taxes and other institutional factors. 

1. Introduction 

Forward markets and futures markets have long played an important role 
in economic affairs. In spite of the attention that they have collectively 
received. virtually no consideration has been given to the differences between 

the two types of markets. Indeed, most of the academic literature has treated 
them as if they were synonomous. Similarly, most practitioners have viewed 
the differences as irrelevant administrative details and acted as if the two 

served exactly the same economic functions. Given the similarity of the two 

markets, such conclusions are quite understandable, but they are nevertheless 
incorrect. Forward markets and futures markets differ in fundamental 
ways. 
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An individual who takes a long position in a forward contract agrees to 
buy a designated good or asset on a specified future date, the maturity date, 
for the forward price prevailing at the time the contract is initiated. On the 

maturity date, then, the forward price must equal the spot price of the 
underlying good or asset. No money changes hands initially or during the 

lifetime of the contract, only on the maturity date. The equilibrium forward 
price must thus continually change over time in a way such that newly 

created forward contracts will always have a zero value when they are 
initiated. 

A futures contract is similar in many ways, but there is an important 
difference. An individual who takes a long position in a futures contract 

nominally agrees to buy a designated good or asset on the maturity date. 
for the futures price prevailing at the time the contract is initiated. Hence, 

the futures price must also equal the spot price on the maturity date 
Again. no money changes hands initially. Subsequently, however, as the 

futures price changes, the party in whose favor the price change occurred 
must immediately be paid the full amount of the change by the losing party. 

As a result, the payment required on the maturity date to buy the underlying 

good or asset is simply its spot price at that time. The difference between that 
amount and the initial futures price has been paid (or received) in 
installments throughout the life of the contract. Like the forward price, the 

equilibrium futures price must also continually change over time. It must do 

so in such a way that the remaining stream of future payments described 

above always has a value of zero. 
The difference in the payment schedules is clearly explained in a seminal 

article by Black (1976). While Black’s discussion is completely correct, it is 
unfortunately presented in the context of a constant interest rate. As it turns 

out, this obscures a basic economic difference between the two types of 
markets. With a constant interest rate, the two arc essentially equivalent and 
forward prices are equal to futures prices, but in general this is not true. 

Several studies in addition to ours have independently noted the critical 
role of stochastic interest rates. To our knowledge, the first to do so was 
Margrabe (1976). Working in a continuous-time framework, Margarbe 
shows that if forward and futures prices are equal there will be an arbitrage 
opportunity unless a certain special condition is satisfied; constant interest 
rates are sufficient but not necessary for this condition to be met. Mcrton 
(1979) uses a discrete-time arbitrage argument to derive a way to sign the 
difference between forward and futures prices. Although Mcrton considers 
only forward and futures contracts on Treasury bills, his approach is such 
that this involves no loss of generality. Jarrow and Oldfield (198 1) provide a 
perspicuous discussion of the contractual differences and use an arbitrage 
argument to show the importance of stochastic interest rates. They also 
show the connection between forward contracts and options. Richard and 



Sundaresan (1981) derive a continuous-time equilibrium model and use it to 
analyze forward and futures contracts. Sundarcsan (1980) employs the 
Richard and Sundaresan model to develop and test a number of explicit 
formulas for forward and futures prices. French ( 198 1) examines a discrcte- 
time utility-based model of forward and futures pricing and undertakes 
several empirical tests of his results. 

One purpose of our paper is to consolidate some of the results of these 
studies. In so doing, we hope to help clarify the relation between forward 
prices and futures prices. Section 2 develops a number of propositions 
characterizing the two prices. These propositions contain several testable 

implications about the difference between forward and futures prices. Many 

of the propositions show that equilibrium forward and futures prices are 
equal to the values of particular assets. This allows one to apply any 
framework for valuing assets to the determination of forward and futures 
prices, even though they arc not in themselves asset prices. Section 3 
illustrates some of these results in a simple two-period framework with a 
complete set of state prices. Section 4 then uses the propositions developed 
in section 2 to examine forward and futures prices in the context of a 
continuous-time valuation model. This model gives a basis for obtaining 
explicit formulas for equilibrium forward and futures prices and hence 
provides further opportunities for empirical testing. In section 5. we con- 
clude the paper with some comments and conjectures about the effects of 
taxes and other institutional factors. 

2. Some fundamental propositions about forward prices and futures prices 

For the most part, our results in this section are based on arbitrage 

arguments and are thus quite general. They are consequences of what is 
sometimes called the law of one price: investment strategies which have the 
same payoffs must have the same current value. To concentrate on the basic 

issues, we assume perfect frictionless markets. Hence. we shall ignore both 
taxes and transactions costs until section 5. 

We shall use the following notation: 

s =maturity date of the forward and futures contracts, 
V(s)=price at time s of the good or asset on which the contracts are written, 
P(t) =price at time t of a default-free discount bond paying one dollar at 

time s, 

G(t) =forward price at time t. 
H(t) =futures price at time t, 

R, = one plus the spot interest rate prevailing from time t to time t + 1. 

Our first two propositions express forward prices and futures prices in 
terms of assets making particular payments on the maturity date: 



Proposition I. The forwurd price G(t) is the vulue at time t of’ u contruct 

H’hich will puy ut time s the amount 

V(s)/P(t). (1) 

Proof: Consider the following strategy: take a long position in l/P(t) 

forward contracts and place the amount G(t) in bonds maturing at time s. 
The current investment required is G(t). There are no interim payoffs, and 

the payoff at time s is 

(2) 

Proposition 2. The jirtures price H(t) is the value at time t of a contruct 

which will puy ut time s the amount 

Proqf Consider the following strategy: at time t, take the amount H(t) and 

continually reinvest it and the accumulated interest in one-period bonds until 

time s. At each time j, j= t, t + 1,. . ., s- 1, take a long position in mi=, R, 

futures contracts. Liquidate each contract after one period and continually 
reinvest the (possibly negative) proceeds and accumulated interest in one 
period bonds until time s. The current investment required for this strategy is 

H(t). The payoff at time s is 

\- 1 s- 1 

= H(s) n R,= V(s) n R,. n (4) 
k=1 k=l 

Propositions 1 and 2 show that the distinction between forward prices and 
futures prices is very much like the distinction between ‘going long’ and 
‘rolling over shorts’ in the bond market. Each price is equal to the value of a 
claim which will pay a particular number of units of the underlying good or 
asset on the maturity date. For the forward price, this number is the total 
return which will be earned on an investment in a discount bond maturing at 
time s. For the futures price, it is the total return which will be earned from 
a policy of continual reinvestment in one-period bonds. This 
characterization draws attention to an important difference between futures 



prices and forward prices: futures prices will depend on the correlation of 

spot prices and interest rates, while forward prices will not. 

Jarrow and Oldfield (198 1) show that forward and futures contracts can be 
used to create a portfolio which will give a sure return on the maturity date 
if interest rates are constant, but not if they are random. Propositions 1 and 

2, taken together, give essentially the same conclusion. Proposition 2 is 
identical to a result derived by Richard and Sundaresan (1981) using their 
equilibrium model and by French (1981) using a discrete-time arbitrage 

approach. Our next three propositions follow immediately from Propositions 1 
and 2. 

Proposition 3 [Black (1976)]. [f interest mes are non-stochus~ic, then G(t) 

=H(t). 

Proof. If interest rates are non-stochastic, then 

&=;+L W (5) 

If there is only one period remaining before the maturity date, l/P(t) will 

always equal R,. Consequently, there will be no difference between forward 
and futures contracts in any one-period model or in any two-period model 

where all goods are consumed in the final period. 

Proposition 4. !j’ V(s) is Finn-stoch~~stic, fherl G(r)= H(t)= V(s) 

Prmf!f: If V(s) is non-stochastic, then a current investment of the amount 
V(s) in bonds maturing at time s produces a payoff at that time of V(s)jP(t), 

so G(t)= V(s). Similarly, a current investment of V(s) in a strategy of rolling 
over one-period bonds gives a payoff at time s of V(s)n;_: R,, so H(t) 

= V(s). w 

Proposition 5. Let hi(t) he thefifutures price cd gi(r) he theji)r\twrd price uf 
rime t qf’(i good i \vho.se spot price LIP time s is ri(s). !f’ 

v(s,=~uil~i(s, f’ . ,’ 01 wme c’on.sturlts (I,) 

then 

H(t)=~tr,h,(t) rlrlrl G(t)=~qgi(t). 
i I 



P~YK$ This follows immediately from the linearity in V(s) of the right-hand 
side of (1) and (3). n 

This result states that the futures price of a portfolio is equal to a 
corresponding portfolio of futures prices and the same is true for forward 

prices. If the payoffs were not linear, then this conclusion would not hold; 
for example, it is well known that an option on a portfolio is not the same as 

a portfolio of options. While Proposition 5 is quite obvious, it is nevertheless 
very useful. One example is provided by the forward and futures prices of 

non-callable government bonds. These bonds can be thought of as portfolios 

of discount bonds. Consequently, any method for finding the futures price of 
a discount bond will also give the futures prices for all coupon bonds. 

Our next proposition expresses the difference between forward prices and 

futures prices in terms of the relation between futures prices and bond prices. 
It is very similar to a result of Merton (1979). Loosely stated, it says that if 

futures prices and bond prices are positively correlated, then the futures price 

is less than the forward price; if they are negatively correlated, then the 
futures price is greater than the forward price. In this and the following 

propositions, we shall occasionally refer to a continuous-time, continuous- 

state economy. By this, we mean an economy in which trading takes place 
continuously and in which all variables relevant to the equilibrium follow 
diffusion processes. 

Proposition 6. G(t)- H(t) is the rdue ut time t of~1 prr~went of 

(6) 

to he received ut time s. For u c,ontinlrou.s-time, continuou,s-stute econom!~, this 

Sum becomes 

1 H(u)[cov H(u),P(u)lWP(t), (7) 

btfhere [cov H(u), P(u)] sturds ,fbr the locul coouriance of the percentage 

changes in H with the percentuge changes in P. Hence, [cov H(u), P(u)] >Ofor 

all u implies G(t)>H(t) uruf [covH(u),P(u)]<Ofbr ull u implies G(t)<H(t). 

Proof: Consider the following strategy, which requires no investment. Take 
a short position in a forward contract at time t. In each period j, j= t,.. ., 
s-l, take a long position in P(j) futures contracts, liquidate them after one 



period, and place the (possibly negative) proceeds in bonds with maturity 
date s. At time s, the payoff to this strategy is 

s- 1 

G(t)-G(s)+ 2 P(j)[H(j+l)-I] 
j=r 

=G(~)-G(.s)+ C [~(,j+ 1 )-H(j)] 
j-r 

.\ 1 

+ c IH(.i+l)-H(j)] 
,--I [& 11 

s- I 

=H(s)-G(.S)+G(t)-H(t)+ 1 [H(j+ 
j=r 

Since this strategy requires no investment, the current values of this payoff 

must be zero. Now note that G(s)=H(s) and that the current value of a 
certain payment of G(t)-H(t) at time s is P(r)[G(t)- H(t)]. Consequently, 

G(t)- H(t) is the current value of a payment at time s of 

Hence, in a continuous-time. continuous-state economy. if the local 

covariance of the percentage changes in H and P will always have one sign 

from t to s. then G(t)-H(t) has the same sign. n 

Like Proposition 2. the following proposition equates the futures price. 
which is not itself the value of an asset, with another quantity which is the 
value of an asset. This allows us to apply any equilibrium framework for 
valuing assets to the determination of equilibrium futures prices. Proposition 

8 establishes an analogous result for forward prices. 

Propositiorl 7. H (t ) is the twlw it limr t of’ II c‘ont~~~t which girrs (I pcl!~nwr~t 

of’ V(s) (It time s mu’ II jlow ,jiiorn time t to time s of’ the prevailing spot rate 
times the precrrilirlg ji~tures price. Thut is. H(t) is the rcrlue c/t time t of’ (I 
contract which pays V(s) at time s and (R,-l)H(u) at each time u+l for 
u=t, t+l,..., s-l. 

ProoJ Consider strategy A: continually reinvest the payouts received from 



this security and the accumulated interest in one-period bonds. At time s, the 
proceeds will be 

5-1 *--I 

1 (R,-l)H(j) fl Rk+V(s). 
,-‘I k=j+l 

(9) 

But since V(s)=H(.s), this can be rewritten as 

.,- 1 *- 1 s- 1 

H(f) 11 R,+ 1 Cff(j+l)-ff(j)I n R,. 
!.=I j=r k=j+ 1 

(10) 

Now consider strategy B: invest H(t) in a one-period bond at time t and 
then continually reinvest the proceeds in one-period bonds. Take a long 

position in one futures contract and continually reinvest the (possibly 

negative) proceeds received at the end of each period in one-period bonds. At 
time s, the proceeds of strategy B will be 

.\- I ‘i- 1 .,- 1 

H(r) fl R,+ 1 [ff(j+l)-H(j)] n R,. 
A=1 j=t h=j+ 1 

(11) 

This is the same as the proceeds of strategy A. Since the current value of B is 
H(t), the current value of A must also be H(t). n 

(12) 

ut WC/I firm u + I ,fbi- u = t, . ., s - 1. 

Proqf: Let strategy A be the following: continually reinvest the payouts 
received from this security and the accumulated interest in one-period bonds. 
At time s the proceeds will be 

,- 1 b -- 1 

j;, (Rj-1)Gf.j) n RL 
k=j+ 1 

(13) 
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Since G(s)= V(s), this can be rewritten as 

.\- I *- 1 \- 1 

G(r) n Rh+ 1 CG(.j+l)-G(,j)] n R, 
h=, ,=I h=j+l 

s-1 

+ c 1Gt.i + 1 I- G (I 11 
jzr 

[‘;;;!- l]h;$, R, 

\- I *- L 

=G(r) n R,+ 1 [G(,j+l)-G(j)] 
h=r j=l 

(14) 

Now consider strategy B: invest G(t) in a one-period bond at time t and 
then continually reinvest the proceeds in one-period bonds. At each time j, 
j = r,. ., s- 1. take a long position in 1 /P(j) forward contracts. Close out each 
contract after one period, thereby locking in the amount G(j+ I )- G(,j) to be 

received at time s. Obtain the present value of this amount, P(,j+ I )[G(,j+ I ) 
-G(J)], and invest it in one-period bonds. Continually reinvest the proceeds 
in one-period bonds thereafter. At time s. the proceeds of strategy B will be 

*- I ,-I \- I 

G(t) 11 Rh+ c [G(j+l)-G(j)] 11 Rk. 
I=1 ,=I h=J+, 

(15) 

This is identical to the proceeds of strategy A. Since the current value of B is 
G(r), the current value of A must also be G(t). W 

Propositions 7 and 8 are useful not only in their own right. but also for 
obtaining Proposition 9. This proposition shows for forward prices a result 
analogous to Proposition 6 for futures prices. It expresses the difference 

between forward prices and futures prices in terms of the relation between 
forward prices and bond prices. 

\-I 

c [G(i+l)-G(j)][!$$-1]], ,=t (16) 

~exP~ilo~Rlii)diijljG(iiirci,iG(li),P(l,),dii. (17) 



contract which pays 

(R,,-t)[H(u)-G(u)]-[G(u+ I)-G(M)] [PIC;n,l)-Il. (IX) 

at each time II + 1 for II = I.. ., .s - I. Consider the following strategy. 

Over each period ,j. take a long position in I$_, R, of these contracts. Do 

this with no net investment in the following way. If the current value of the 

contract is positive, borrow the amount and use the first component of the 
payout, which wilt be positive. to repay the borrowing; if the current value is 
negative. tend the amount and use the proceeds of the lending lo make 
restitution for the first component of the payout, which will be negative. 

After doing this, the remaining proceeds at timej+ I from the position taken 

at time ,j will be 

[H(.j+ 1 I-G(i+ I )I-[H(,ib G(i)1 

lnvcst this amount in one period bonds at time ,j+ I and then continually 

reinvest it and the accumutatcd interest in one-period bonds. At time s the 

total proceeds from all positions taken from t to \ will be 

\- I 

izr [H(i+ I )-G(i+l)l~IH(,j)~G(.j)l 

Note that since G(s)= H(s), then 

\- 1 

j~,[LH~.i+t~-G~i+t~l-[Hci~~G~illl=Glr~-H(r~. (21) 

Since the entire position requires no net investment. its current value must be 

zero. The current vatuc of the amount [G(r)- H(t)] n;l: R, received at time 



s is G(t)-H(t). Consequently, G(f)-H(t) is the current value of a payment 
at time s of 

1 [G(j+ 1 )- C;(; )] 
,=I 

Hence, for a continuous-time. continuous-state economy. if [co\ G(LI). P(Ic)] 
always has one sifn. then G(r)- H(f) has the same sign. n 

Note that Propositions 6 and 9 show the relation between forward and 
futures prices when both forward and futures markets exist simultaneously. If 

we find, for example, that G(t)>H(t), this does not imply that replacing a 

forward market with a futures market will result in a lower price. Such a 

change could conceivably affect the equilibrium valuation of all assets and 
lead instead to a higher price. At the present time, simultaneous forward and 

futures markets are available for certain U.S. Treasury and Government 
National Mortgage Association securities. some foreign currencies, and a 
number of commodities. However, the forward contracts are typically traded 

with standardized times to maturity rather than standardized maturity dates. 
In these cases, corresponding forward and futures contracts ejiist 

simultaneously only on the days for which a standardized time to maturity in 
the forward market coincides with a standardized maturity date in the 

futures market. 

Up to this point, nothing that we have said has depended on the existence 
of a spot market or on the characteristics of the underlying good or asset. 
Indeed, this good or asset need not even exist at the current time. This 
could be the case, for example. with a perishable commodity before the next 
crop is harvested. However, if there is a spot market, or an options market, 
then we can express our results in terms of spot prices and option prices. 

If V(s) is the price at time s of a currently traded good or asset. then 

G(f)=O(f),P(t). (‘3) 

where O(t) is the current value of a European call option with maturity date 
s and exercise price zero. [The strategy of buying I :P( f ) options gives ;I 

payoff at time s of V(.s)/P(t).] In that case 



and for continuous-time, continuous-state economies this becomes 

G[COV G, P] = (O/P)[cov 0, P - var PI. (25) 

If the asset makes no payouts between t and s, then O(r)= I’(t). This 

immediately leads to a result which was obtained in a different way by 
Margrabe (1976): 

(i) 

(ii) 

cov 1/PPvarP implies G(r)>H(t), 

cov V,PivarP implies G(t)<H((). 
(26) 

For Treasury bills, 1/ is itself a discount bond maturing at some time after s. 

We would thus expect V and P to be highly correlated and var I’> var P. 

Hence, we would expect cov v P > var P and G(t)>H(t). For an asset which 

is a hedge against bond price fluctuations (i.e., is negatively correlated with 
bond prices), we would have cov r/: P < var P and G(t) < H(t). 

With the existence of a spot market, we can also obtain another result 

somewhat similar to Proposition 6, but involving payouts depending on the 
spot price rather than the futures price. This gives an additional way to 
determine the futures price. It also allows us to express the relation between 

futures prices and spot prices in terms of the relation between the interest 
rate and the spot rental rate on the good or asset. By the spot rental rate at 

time M, we mean the fraction of the beginning-of-period spot price which 
would have to be paid at the end of the period to obtain the full use of the 

good or asset during the period, including the right to receive any payouts 

such as dividends. 

Proposition 10. Let Y,, be the spot rental rate at time u. Then H(t)- V(t) is 

equtrl to the whir of’ a corltract \vhich gives (I payment Qf 

u-l 

C(R,,- 1 - y,)V(~~)l fl R,, (27) 
r=r 

ut each time u + I jtir II = t, t + 1,. ., s - 1. Consequently, f the spot interest rute 

is cr1wtry.s greuter (less) than the spot rentcrl rute. then the ,firtures price is 

grerrter (less) than the spot price. 

Proyf: Let Z(t) be the value at time r of the contract described. Consider 
the following strategy. At time t, take a long position in one contract and 
buy one unit of the good or asset in the spot market for V(t). Finance the 
spot purchase by rolling over one-period loans. The total investment 



required is thus Z(t ). At each time .j, for j = t + 1,. . . . s - 1, use the payment 
received from the contract and the proceeds from spot rental over the 

previous period to increase the number of units of the spot good or asset 
held from ni:: R, to fl{=, R,. The total value of the position at time s is 

Using Proposition 2, the current value of this amount is H(t)-V(t). 
Consequently, Z(t)=H(t)- V(t). If all of the payments given by the contract 

are positive (negative). then its current value must be positive (negative). so 

wtbv(t) zwaw). n 

Our final proposition relates our results to the continuous-time capital 

asset pricing model (CAPM). It is stated in terms of the CAPM in 

consumption form as derived by Breeden (1979) but the same conclusions 

hold for the original multi-factor model of Merton (1973). 

1rt+itI.llI.!’ V(s). hut ,fOl.ll'lwlI prices \\,;I/ 110 so ot7/~~ if’ i17trr13t 
stochust ic. 

Proofs Consider the dollar return from holding over one 

position in l/P(r) forward contracts and the amount G(t) 
bonds. The dollar return is 

I’utes 11I’e t2om 

period a long 

in one-period 

(29) 

Denote the expected value of the dollar return as /lG. The CAPM in 
consumption form says that 

where 

PC.K = cov P(r+li[G(t+l)-G(r)], C(t+l)-C(r))/& 
p(t) 

C(t) is aggregate consumption at time t. M(t) is the value of the market 



portfolio at time t, and K is the portfolio described above. Consequently, we 
can write 

i 

P(r+ I) 
=cov -p(tj ~G(t+l)-G(f)l~C(f+l)-C(r) ) / 

where E indicates expectation. Also, we have 

=[c(t+l)-c(t)]+ ppGT -1 [C(r+l)-G(t)l. r@+‘) i 
Thus. in the limit for continuous-time. continuous-state economies, 

(32) 

(33) 

SO forward prices can satisfy the CAPM only if 

in the limit, which will be true for arbitrary I/ only if interest rates are non- 
stochastic. 

Consequently. any attempt to apply the CAPM to a series of forward 
prices will be misdirected. However, a slight modification of this line of 
reasoning shows that changes in futures prices. when combined with a 
portfolio as described above, will satisfy the CAPM in consumption form, as 
is discussed in Breeden (1980). n 



This concludes our series of propositions relating forward prices and 
futures prices. Although we hope that our list contains the most important 

propositions, it is not meant to be exhaustive: we have not found a general 

way to characterize all possible relations between the two prices. 
In the remainder of this section. we discuss how some of the features of 

forward and futures contracts could be combined. Forward contracts provide 
an easy way for an individual to lock in at time r the amount he will have to 

pay at time s for one unit of the underlying good or asset. By taking a long 
position in a forward contract, the individual can arrange today to buy the 

good on the maturity date for a price of G(t ). An itnportant implication of 
our results is that futures contracts cannot in general provide exactly the 

same service. An exact hedging strategy using only (a finite number of) 

futures contracts may not be possible. and even if possible, it would typically 
require more information than is needed when employing for\vard contracts. 

It may appear that this is a necessary consequence of the resettlement 
feature of futures contracts. This would be unfortunate. since resettlement 
may provide certain advantages. With forward contracts significant implicit 
or explicit collateral may be necessary: with futures contracts the 
requirements would be much smaller. Futures markets thus to a large extent 

separate the actual transactions in the good from the issues of 
collateralization and financing, while forward tnarkets do not. However. it is 

easy to specify a contract which wilt meet the dual requirements of providing 

a simple exact hedging procedure and requiring only minimal collateral. This 
is in fact exactly what would be accomplished with a forward contract which 
had to be settled and rewritten continually. 

To make this more precise. we introduce a quasi-futures contract, which is 
exactly the same as a regular futures contract. except that at the end of each 

period the person in whose favor the price change occurred is paid not the 
full amount of the change. but instead the present value that this full amount 
would have if it were paid on the maturity date. If we denote the quasi- 

futures price at time t as Q(r), then an individual having a long position in 
such a contract receives at each time j-t 1. for j=t,. ..s-1. the amount 
P(j+l)[Q(j+l )--Q(j)]. If the individual invests the (possibly negative) 

proceeds received at each time ,j+ 1 in bonds maturing at time s, then the 
value of his position at time s will be 

a-l 

(35) 

This strategy allows the individual to arrange today to buy the good on the 
maturity date for a designated price Q(r). Since the strategy requires no net 

investment, it is equivalent to a forward contract, and hence Q(t)= G(t). 



3. A two-period example 

In this section. we give a simple example in which forward and futures 

prices can be found directly and use it to illustrate some of our propositions. 
In the next section. we shall reverse this procedure and use the propositions 
to determine forward and futures prices in a more complex setting. 

For our first example, we consider a two-period model with a complete 
5ystcm of state prices. We shall supplement our earlier notation in the 

following way: 

p, -price at time t of a claim which will pay one dollar at time t+ 1 if the 

economy is in state i at time t + 1, 

pii = price at time t + 1 of a claim which will pay one dollar at time t + 2 if 

the economy is in state i at time t + 1 and state j at time t + 2, 

I/, = price of the underlying good or asset at time t + 2 if the economy is in 
state i at time t + I and state ,j at time t + 2, 

Hi = futures price at time t + 1 if the economy is in state i at time 1-t 1. 

As before. G(t) and ff(1) stand for the current forward price and futures 
price. respectively. 

At time t+2, the value of a forward contract written at time t will be 

C:,-G(r), (36) 

and the current value of this amount is 

CPiPijlKjeGlt)l. (37) 
i..; 

Since no money changes hands initially, both parties will be willing to enter 
into the contract only if its current value is zero. Consequently, 

G(r)=CP,PijC:jiCP,P,,j, 

I. i i.j (38) 

The current value of a bond paying one dollar at time t f2 is ci,jpipij, so 
this verifies that G(t) can be found as shown in Proposition 1. 

Now we turn to determining the current futures price. Note that at time 
t+l the futures contract is the same as a forward contract, so 

(39) 
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At time t, the holder of a futures contract knows that he will receive at time 

t+l the amount 

H,-H(t), 

the current value of which is 

Again. since no money changes hands when the 

current value must be zero. so 

Since R,= l&pi and R,+,= l&p,,, this result illustrates Proposition 2. 

The current futures price is the same as the value of a claim which will pay 
at time t +2 the amount vi times the total return from rolling over one- 

period bonds. 

(40) 

(41) 

contract is initiated, this 

(42 1 

If interest rates are non-stochastic, then cjp,, is the same for all i, and 

Ci.jPiPij=(CiPi)(CjPij)’ H ence, it is apparent by inspection that G(r)=H(t). 
Similarly, if vj is a constant, then it is obvious that G(t)=H(t). 

4. Futures prices and forward prices in continuous-time, continuous-state 

economies 

Propositions 2. 7 and 10 show how to construct assets whose current value 

must be equal to the current futures price. Propositions 1 and 8 do the same 
for forward prices. These results enable us to apply any intertemporal 
valuation model to the determination of forward and futures prices. 

For our second example, we shall use a valuation framework which has 
become standard in finance. It has been shown by various arguments that in 

a continuous-time, continuous-state economy the value of any contingent 



claim F will satisfy the fundamental partial differential equation 

where subscripts on F indicate partial derivatives and X is a vector 
containing all variables necessary to describe the current state of the 
economy. The remaining symbols are as follows: ii, is the local mean of 
changes in Xi, cov Xi. Xj is the local covariance of the changes in Xi with the 

changes in Xj, r(X,t) is the spot interest rate, 6(X,t) is the continuous 
payment flow (if any) received by the claim, and 4; is the factor risk 
premium associated with Xi. 

A number of studies have derived equations similar to (43) based on 
arbitrage arguments. For example, see Brennan and Schwartz (1979). 
Garman (1977), and Richard (1978). In these models, the factor risk 
premiums and the processes driving the state variables are determined 
exogenously or remain unspecified. 

A somewhat different approach leading to the same type of equation is 

taken in Cox, Ingersoll and Ross (1978). In that paper. an intertemporal 
equilibrium model is developed in which all economic variables, including 

the interest rate and the factor risk premiums, are endogenously determined 

and explicitly identified in terms of individual preferences and production 
possibilities. Richard and Sundaresan (1981) extend this model to include 
multiple goods and use it to examine forward and futures contracts. In that 

setting, Sundaresan (1980) develops several explicit formulas for forward and 
futures prices. Most of our results in this section are special cases of their 
results. 

Proposition 7 states that the futures price is equal to the value of an asset 
which receives a continual payout flow of (R,,-l)H( u) and the amount V(s) 
at time s. In the present application, this would correspond to 
6(X, t)=r(X, t)H(X, t) and H(X, s)= V(X. s). The futures price must thus 
satisfy the partial differential equation 

~~(covXi~Xj)N~,,~,+~(~‘~~~~~i)H~,+H~~O~ (44) 
i.J I 

with terminal condition H(X, s) = V(X, s). 
Two results from Cox, Ingersoll and Ross (1978) will be useful in 

characterizing futures prices. Lemma 4 of that paper shows that with &=O 
the solution of (43) for a claim paying 0(X(s)) at time s can be written as 

$O(X(.s))[exp[-!r(i(ll))dil)l] (45) 



where in? indicates expectation taken with respect to a risk-adjusted process 

for the state variables. The risk adjustment is accomplished by reducing the 
local mean of each underlying variable by the corresponding factor risk 
premium. Proposition 2 states that the futures price is the same as the 
current value of an asset which will receive a single payment of 0(X(s)) 

==V(X(s))[exp(J’ir(X(u))du)] at time s. Consequently. we can write the 

futures price as the risk-adjusted expected spot price at time s, 

H(X,r)=E[v(X(s),]. (46) 

An immediate application of theorem 4 of Cox, Ingersoll and Ross (1078) 
shows that the futures price can be written in yet another way as 

H(X,r)=E (47 1 

where E indicates expectation with respect to the actual process (with no 
risk-adjustment) for the state variables and JW( . ) is the marginal utility of 
wealth of the representative individual. Given proposition 2. this is an 
intuitively sensible result. Since H is the value of a security which will pay 

V(X(s))exp[~~r(X(u))du] at time s, (47) simply says that the value of this 

security is the expectation of its marginal-utility-weighted payoffs. 
Forward prices can be obtained in a very straightforward way. From 

Proposition 1, G(X, 1) will equal (l/P(t)) times the solution to (43) with 6=0 
and F(X. s) = V( X, s). Similarly. we can write 

(48) 

As we have noted, an important historical role of forward and futures 
markets has been to provide a mechanism by which individuals can lock in 

today the price which they will have to pay for a good or asset on a future 
date. The simple strategy of taking a long position in one forward contract 

will accomplish exactly that, but the corresponding strategy of taking a long 
position in one futures contract will not. However, this does not rule out the 
possibility of achieving the same outcome by using futures contracts in a 
more complicated strategy. In the present context, with say II state variables. 



the results of Black (1976) indicate that we should be able to find a 

controlled hedging portfolio, along the lines of Merton (1977), containing II 

futures contracts and borrowing or lending at the spot interest rate r which 
will require no subsequent investment and will duplicate the payoff to a 

forward contract on the maturity date. 

To pursue this without unnecessary complications, we shall consider the 
case of II= 1; generalization to an arbitrary number of state variables is 

straightforward. Let n be the value of the hedging portfolio, and let c( be the 

number of futures contracts held in this portfolio. Further, let D(t) be the 
value at time I of a forward contract written at time y; if q is the current 

time t, then D(t)=O. Consider the following strategy. At time t, make an 
investment of D(t) in the hedging portfolio. Place this amount in spot 

lending (rolling over shorts). At each time 5. take a long position in 

Dx(-r)/Hx(~) futures contracts, using (41) and (42) to find D and H in terms 
of X and t. Invest all money received from the futures position in spot 
lending and finance all money due by spot borrowing. If it is always possible 
to trade at equilibrium futures prices and interest rates, then this hedging 

portfolio will have the same value as the forward contract on the maturity 
date. To see this, consider the following argument. Let w(t) be the Wiener 

process driving the state variable, and let LH denote the differential 

generator of H, LH~$T*(X)H,,+~,H,+H,, where g*(X) is the local 
variance of the changes in X. From Ito’s formula, the value of the hedging 

portfolio will follow the stochastic differential equation 

d7r(t)=).(X,t)~(t)dt+tX(X,t)dH(t). (49 1 

Hence, the value of the portfolio at time s is 

a(z)LH(z)dz 

a(z)H,(z)a(z)dw(z) . 1 (50) 
Now note that (43) implies that LD=4,D,y+ rD and (44) implies that LH 
=cjxH,, so LH=(LD-rD)/(D,/H,). Substituting this expression for LH 
into (SO) and letting 2 = D,/H, gives 



Since n(t)=D(t). then r(s)=D(s), so the hedging portfolio will have the same 
value as a forward contract on the maturity date. The particular nature of 
the payoff received by a forward contract played no role in the argument. so 

there is no problem in specifying a more general payoff. Similarly. with 
multiple state variables, both traded assets and futures contracts can be 
included in the hedging portfolio. However, readers should bc aware that our 

discussion has not gone into certain technical difficulties connected with 

continuous trading [see Harrison and Kreps (1979)]. 
An important advantage of the framework used in this example ia that it 

can easily be specialized to produce testable explicit formulas. An illustration 
of this is its application to the term structure of interest rates. For instance, 

under the additional assumptions of logarithmic utility and a technology 
which leads to a spot interest rate following the stochastic differential 

equation 

it is shown in Cox, Ingersoll and Ross (1978) that the prices of discount 
bonds will satisfy the partial differential equation 

$T2rPrr + [K/l - (ti + i.)r]P, + P, - rf =o, (5% 

where K, p and o are the parameters of the interest rate process and ir is the 

local covariance of changes in the interest rate with percentage changes in 
aggregate wealth (the market portfolio). 

Now consider the forward and futures prices for contracts with maturity 
date s on a discount bond paying one dollar at time 7; with T>s. 

Straightforward application of the methods discussed earlier shows that 

G(r)= $g:f exp[-r(B(T-r)-B(s-t))], 
( 1 

(54) 



and 

(55) 

where 

;‘= [(K $ i)’ + 2aq+, 
2(X+/,) ,/ = _ rag ~_~_. 

cr (l-e 
_~. 

--,Y+/.,,S--I, 
1 

Note that since A(O)-1 and B(O)=O, G(s)=H(s), as of course it must. 
For all f<s. G(t)>H(t), confirming the observation made about Treasury 

bill futures in the discussion following Proposition 9. It is apparent by 
inspection that forward and futures prices are decreasing convex functions of 

the interest rate, as i:, also true of bill prices in this model. However. unlike 

the bill prices. the forward prices and futures prices can be increasing 
functions of the time to maturity for sufficiently high interest rates. 

This approach can be generalized in a number of ways. For example, the 
simple mean-reverting drift for the interest rate in (52) can be replaced with 

exponentially Lveighted extrapolative and regressive components, as in the 
De Leeuw-Malkiel term structure hypotheses [see Cox, Ingersoll and Ross 
(1981)]. Although the resulting forward and futures prices are more 
complicated than (54) and (SS), they still retain the simple exponential form. 
Furthermore, Proposition 5 shows that our results for discount bonds can be 

immediately applied to coupon bonds. 
Formulas such as (54) and (55) make predictions about simultaneous 

prices in different markets, and hence offer interesting opportunities for 
empirical testing. However, the empirical magnitude of the effect introduced 
by the continual resettlement feature of futures contracts remains an open 
question. Capozza and Cornell (1979) analyzed futures prices and implicit 
forward prices in the Treasury bill market and found that, except for very 



short maturities, forward prices exceeded futures prices and that the 

difference increased with time to maturity. Rendleman and Carabini (1979) 
independently reached a similar but less definitive conclusion. These findings 

are generally coqsistent with the qualitative predictions of (26). However, 
Rendleman and Carabini have examined (54) and (55) for a range of 
parameter values and have concluded that the implied differences do not 

fully explain the observed differences between forward prices and futures 
prices in the Treasury bill market. This may indicate that one of the 

generalizations mentioned above will be more appropriate. Another possible 

explanation for the observed discrepancies lies in various tax effects which we 
have thus far ignored but shall consider in the next section. 

5. The effects of taxes and other institutional factors 

We shall postpone a complete discussion of taxes until another occasion. 

but some informal comments and conjectures may still be worthwhile. The 
simplest way to introduce taxes into the setting of section 4 is as follows. 
Taxes are collected continuously at constant rates which are the same for all 

individuals. Capital gains are taxed as they accrue, rather than when realized. 
with full loss offsets. The dollar receipts from futures price changes are 
taxed as capital gains. 

In such a world, investors will be concerned with their after-tax returns 
and will value contingent claims accordingly. For any given claim F, let the 
tax rate for capital gains be c and the tax rate for payouts and interest 
income be d. It can then be shown that the fundamental valuation equation 
becomes 

i. j I 

(56) 

Since the last two terms will not apply for a futures price, taxes of this type 
will have no direct effect upon its value. Of course, there will be indirect 

effects, since taxes will in general affect the factor risk premiums and the 
current values and stochastic processes of all endogenously determined state 
variables. However, if we are considering the comparative effect of a change 

only in the tax rate applicable to futures markets, then these general 
equilibrium effects would presumably be negligible or non-existent, and the 
futures prices would remain unchanged. Notice, too, that for Treasury bills 
6 =0 and c=d, since their price changes are taxed at the rate for ordinary 
income. Hence, their valuation equation would remain the same as well. 
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The actual tax law is of course more complex than this, particularly with 
regard to Treasury bill futures. It currently appears that a gain on a long 
position in a Treasury bill futures contract will be taxed as a long-term or 
short-term capital gain, depending on whether the holding period is longer 
or shorter than six months. On the other hand, if the position shows a loss, 
by taking delivery and selling the Treasury bills, the basis can be taken to be 
the original futures price and the loss will be considered as an ordinary loss. 

If the taxes are collected on the maturity date and all individuals are taxed 
at the same rate. then a modification of the above analysis can be used to 
find the futures price. With this type of tax, the terminal condition will 
depend on the initial value, so a recursive procedure is necessary. The 
problem is first solved with an arbitrary parameter replacing the initial value 
in the terminal condition. This parameter is then varied until the initial 
value and the parameter value are equal. As one would expect, other things 
equal, this tax option results in a higher futures price. 

We have not gone through this analysis explicitly only because we are not 
convinced of its relevance. Additional considerations may bring us full 
circle. Although we cannot provide a formal model which includes both 

differential taxes and transactions costs, it seems likely to us that the agents 
with transactions costs low enough to be able to conduct arbitrage 
operations are likely to be professionals who are taxed at the same rate for 

all trading income and who consequently derive no benefit from the special 

tax option. The actions of arbitrageurs would thus tend to keep futures 

prices near the levels we have predicted; simutaneously, individuals who 

cannot conduct arbitrage operations could nevertheless obtain tax 

advantages at these prices. Cornell (1980) has persuasively advanced this 
point of view and has provided some interesting empirical support. If the 

actions of arbitrageurs did not effectively determine the Treasury bill futures 

price, then one would expect a discontinuous change in the price (though not in 
the after-tax returns to the marginal investor) when a contract changes from 
long-term to short-term tax treatment, but Cornell found no evidence of this. 

Some additional institutional factors may have an effect on the futures 

price in particular markets. In the basic futures contract we described, the 
seller of the contract can on the maturity date close out his position either 
by taking an offsetting long position or by delivering the specified amount of 
the underlying good or asset. In many markets, the seller has somewhat 
more flexibility than this. He may have one or more of three additional 
alternatives which we will refer to as a quality option, a quantity option, and 

a timing option. 
The quality option allows the seller some discretion in the good which can 

be delivered. For example, several different types of a particular grain may 
all be acceptable. If the spot price of one of the types would always be less 



than the others. then this is the one the seller would choose. and the contract 

would in effect become an ordinary futures on that type. The situation is 

only slightly more complicated when the price ordering is not always the 
same. In that case, all of our results would hold. or would require only 
minor modification, when V(s) is replaced by the minimum of the spot prices 

of the acceptable goods on the maturity date. 
The quantity option allows the seller some choice in the amount of the 

good which is to be delivered. In this case, the futures price is quoted on a 

per unit basis, so the choice concerns only the scale of the contract. In 

perfect, competitive markets. as we have assumed, the quantity option will be 
a matter of indifference and will have no effect on the futures price. 

The timing option gives the seller some flexibility in the delivery date of 
the good. In this case, delivery can be made at any time during a designated 

period beginning on the maturity date. Typically. the designated period is 
one month or less. Since delivery can be postponed. the futures price will not 
necessarily be equal to the spot price on the maturity date. Clearly. the 

futures price cannot be greater than the spot price during the designated 
period. If it were, then it would be possible to make an arbitrage profit by 

simultaneously selling a futures contract. purchasing the good in the spot 

market. and making delivery. Consequently. we must append to any 
valuation framework the arbitrage condition H(T)ZV(T) for all T such that 
~5~5s’ and H(s’)=V(s’), where s’ is the end of the designated period. 

Readers familiar with option pricing theory will note the similarity to the 

arbitrage condition for an American option. We can now use Proposition 10 
to give a sufficient condition for the effective delivery date to be s or s’. 

According to this proposition. if the spot rental rate is always greater than 

the spot interest rate, then the futures price with maturity date s’ is always 
less than the spot price. Consequently, the arbitrage condition will always be 

satisfied and the futures price can be determined as if the maturity date were 

s’. On the other hand, if the rental rate is always less than the interest rate, 
then the arbitrage condition cannot be satisfied for any maturity date later 
than s and all deliveries would be made at that time. In this case. the futures 
price can thus be determined as if the maturity date were s. 
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