Linear Representations of Finite Groups

Homework #5

Due on 2022 年 12 月 28 日

苏可铮 2012604

Problem 1

将 S_3 (数字 1、2、3 的置换群)视为 S_4 的子群。从 S_3 的 2 维不可约表示 W 可以诱导出 S_4 的表示 $Ind_{S_5}^{S_4}W$,求 $Ind_{S_5}^{S_4}W$ 关于 S_4 的不可约表示的直和分解

Proof. 由 S_3 的 2 维不可约表示的划分为 (2,1),因此满足 3 \nearrow 4 的划分为 (3,1),(2,2)则由 Branching 法则:

$$\operatorname{Ind}_{S_n}^{S_{n+1}} S^{\lambda} \cong \bigoplus_{\mu: \lambda \nearrow \mu} S^{\mu}$$

即

$$\operatorname{Ind}_{S_3}^{S_4} S^{(2,1)} = S^{(3,1)} \bigoplus S^{(2,2)}$$

Problem 2

设 H 是有限群 G 的子群,且 H 是交换群。证明:G 的任意复不可约表示的维数不超过 |G|/|H| Proof. 对于 $\varphi \in Irr(H), \psi \in Irr(G)$,由 Frobenius 互反律有:

$$[\psi,\varphi^G]_G = [\psi,\varphi^G]_H = \begin{cases} 1 & \text{if } [\psi,\varphi^G]_G > 0, \\ 0 & \text{if } [\psi,\varphi^G]_G = 0. \end{cases}$$

由 H 是交换群,则 $\varphi(1)=1$ 且 $\varphi^G(1)=|G|/|H|$ 又对 $\forall \psi \in Irr(G)$, ψ 均为 φ^G 的不可约成分,即 G 的任意复不可约表示的维数不超过 |G|/|H|

Problem 3

 $G=< a,b \mid a^6=1,a^3=b^2,b^{-1}ab=a^{-1}>$,已知其共轭类为 $C_1=\{1\}$, $C_2=\{a^3\}$, $C_3=\{a,a^5\}$, $C_4=\{a^2,a^4\}$, $C_5=\{b,a^2b,a^4b\}$, $C_6=\{ab,a^3b,a^5b\}$,以下是 G 的复特征标表

g_i	C_1	C_2	C_3	C_4	C_5	C_6
$ C_G\left(g_i\right) $	12	12	6	6	4	4
χ_1	1	1	1	1	1	1
χ_2	1	1	1	1	-1	-1
χ_3	1	-1	-1	1	i	-i
χ_4	1	-1	-1	1	-i	i
χ_5	2	-2	1	-1	0	0
χ_6	2	2	-1	-1	0	0

- 1. 求出 χ₅ 和 χ₆
- 2. 说明 χ_5 和 χ_6 对应的复不可约表示是否可以在 ℝ 上实现

Proof. 显然群 G 有 6 个共轭类和 6 个不可约表示特征标且 |G|=12

(1) 由 $G' = \langle a^2 \rangle$,故 |G|/|G'| = 4,又 $G/G' \cong C_4$,则可知群 G 有 2 个不可约特征标和 4 个线性 特征标(即为已知的 $\chi_1, \chi_2, \chi_3, \chi_4$),由

$$n_1^2 + n_2^2 + n_3^2 + n_4^2 + n_5^2 + n_6^2 = |G| = 12$$

则只能有 $n_1 = n_2 = n_3 = n_4 = 1$, $n_5 = n_6 = 2$

再利用第二正交关系

$$\frac{1}{|C_G(g)|} \sum_{i=1}^m \chi_i(g) \chi_i(h) = \begin{cases} 1\\ 0 \end{cases}$$

可解出 χ_5 和 χ_6 为:

g_i	C_1	C_2	C_3	C_4	C_5	C_6
$ C_G(g_i) $	12	12	6	6	4	4
χ_1	1	1	1	1	1	1
χ_2	1	1	1	1	-1	-1
χ_3	1	-1	-1	1	i	-i
χ_4	1	-1	-1	1	-i	i
χ_5	2	-2	1	-1	0	0
χ_6	2	2	-1	-1	0	0

(2) 若要判断 χ_5 和 χ_6 是否可以在 \mathbb{R} 上实现,则要求 V 是实的则由 Frobenius-Schur 指标定理,若 V 是实的当且仅当

$$F(\chi) = \frac{1}{|G|} \sum_{g \in G} \chi(g^2) = 1$$

对于 χ_5 :

$$F(\chi_5) = \frac{1}{|G|} \sum_{g \in G} \chi_5(g^2) = 0$$

即 χ_5 对应的 V 是复的,即不能在 \mathbb{R} 上实现

对于 χ_6 同理有 $F(\chi_6) = 1$

综上 χ_5 对应的复不可约表示不可以在 ℝ 上实现; χ_6 对应的复不可约表示可以在 ℝ 上实现

Problem 4

设群 G 的阶数为奇数, $c \in G$ 的共轭类的数目。证明: $|G| \equiv c \pmod{16}$

Proof. 不妨记 d_i (i = 1, ..., c) 为群 G 的不可约表示的维数,则有:

$$d_i \mid |G|$$

由 |G| 为奇数,则 d_i 也均为奇数,则有:

$$d_i^2 \equiv 1,9 \; (mod \, 16)$$

又

$$|G| = \sum_{i=1}^{c} d_i^2 = 1 + \dots + 1 + 9 + \dots + 9 \pmod{16}$$

令

$$\phi: \mathbb{Z}_{16} \to \mathbb{Z}_8$$

则

$$\phi(\sum_{i=1}^{c} d_i^2) = \sum_{i=1}^{c} 1 \ (mod 8) = c \ (mod \ 8)$$

则为了得到 $|G|\equiv c\ (mod\ 16)$,只需证明 $d_i^2\equiv 9\ (mod\ 16)$ 的表示出现偶数次即可对于 $g\in G, g\neq g^{-1}, g=hg^{-1}h^{-1}, h\in G$,令 g 的共轭类为 d_g ,则有 $|d_g|$ |G|,即 $|d_g|$ 为奇数,则表明必然 $\exists k\in g_d$ 且其与其逆非共轭,对于 k^{-1} 同理,这表明这样的不可约表示是成对出现的,即证明了我们以上的命题